19 Ocak 2017 Perşembe

İntegral

BELİRSİZ İNTEGRAL

TANIM:
 tanımlı ve türevlenebilir iki fonksiyon olsun.
Her x Є (a, b) için, F’(x) = f(x) ise F(x) fonksiyonuna f(x) fonksiyonunun ilkeli veya belirsiz integrali denir. Bunu,  C Є R  olmak üzere,


Biçiminde gösterilir. ſ f(x) dx   ifadesini, “integral f(x) dx” diye okuruz.

Kısaca, ſ f(x) dx demek, türevi f(x)  olan  F(x)  fonksiyonunu bulmak demektir.
ſ f(x) dx = F(x)+C   ifadesindeki;

-       f(x) fonksiyonuna integrand,
-       F(x) fonksiyonunun bulunması işlemine integrasyon işlemi,
-       C reel sayısına da integrasyon sabiti denir. Bir fonksiyonda, sabit terimin türevi sıfır olduğundan, integral alınırken bu sabit terimi bilemeyiz.
-       ſ f(x) dx ifadesindeki dx ise, integrasyonyn değişkeninin x olduğunu belirtir.


TEOREM: Bir fonksiyonun diferansiyelinin integrali, bu fonksiyona sabit eklenerek bulunur.

ſ d( f(x) ) = f(x)+C      dir.


TEOREM: Bir fonksiyonun bir sabitle çarpımının integrali, o fonksiyonun integralinin sabitle çarpımına eşittir.
Yani, integral içindeki sabit çarpan, integral dışına alınabilir.

Her a Є R  için,  ſ a . f(x) dx = a . ſ f(x) dx          dir.

TEOREM: İki fonksiyonun veya farkının integrali, bu fonksiyonların integrallerinin toplamına veya farkına eşittir.

ſ[f(x) + g(x)] dx = ſ f(x) dx + ſ g(x) dx     ,
ſ[f(x) - g(x)] dx = ſ f(x) dx - ſg(x) dx                  tir.


TEMEL İNTEGRAL ALMA FORMÜLLERİ


Yukarıdaki eşitliklerin doğruluğunu gösterebilmek için, sağ taraftaki fonksiyonların türevlerini alarak, integrali alınan fonksiyonu elde ederiz.


İNTEGRAL ALMA YÖNTEMLERİ

İntegrali alınacak fonksiyonun, hangi fonksiyonun türevi olduğunu görmek, her zaman pek mümkün olmaz. Bunun için, bazı integral alma yöntemleri oluşturulmuştur.

1. DEĞİŞKEN DEĞİŞTİRME YÖNTEMİ
f,   g,  fog  ve  g’  fonksiyonları, bir [a, b] aralığında sürekli fonksiyonlar olsun

ſ f(g(x)).g’(x) dx

biçimindeki integralleri hesaplamak için,  u = g(x)  dönüşümü yapılır ve her iki tarafın diferansiyeli alınırsa,  du = g’(x) dx  elde edilir. Bu durumda integral,

ſf(g)).g’(x) = ſ f(u) du

biçimine dönüşür. ſ f(u) du ifadesinin,  u  değişkenine göre integrali alındıktan sonra,  u  yerine g(x) yazılarak, sonuç x değişkenine göre bulunmuş olur.

* ſ [f(x)]ⁿ . f’8x) dx  ifadesinde olduğu gibi, kuvveti alınan fonksiyonun türevini aldığımızda, yanındaki çarpanı elde edebiliyorsak, bu ifadenin integralini kısaca;

ſ[f(x)]ⁿ . f’(x) dx = {[f(x)]ⁿ´¹ / n+1} + C              (n = -1)
biçiminde alabiliriz.


LOGARİTMİK VE ÜSTEL İNTEGRAL ALMA KURALLARI:

1.   ſ {f´(x) / f (x) = ln |f (x)| + C
2.   ſ eª . f´(x) dx = eª + C                   ( a = f(x))
3.   ſ eª . f´(x) dx = {eª / ln e} + C             (a = f(x))

Bu eşitliklerin, sağ tarafındaki ifadelerin türevlari alındığında, integrali alınacak ifade elde edilir.

BAZI TRİGONOMETRİK İFADELERİN İNTEGRALLERİ

1.   ſ sin(f(x)) . f´(x) dx  = -cos f(x) + C
2.   ſ cos (f(x)) . f’(x) dx = sin f(x) + C
3.   ſ{f’(x) / cos²f(x)} dx = tan f(x) + C
4.   ſ{f’(x) / sin²f(x)} dx = -cot f(x) + C
5.   ſsin(ax + b) dx = (-1 / a) cos(ax + b) + C         (a = 0)
6.   ſcos(ax + b) dx = (1 / a) sin(ax + b) + C         (a = 0)
7.   ſ{dx / cos²(ax + b) dx = (1 / a) tan (ax + b) + C   (a = 0)
8.   ſ{dx / sin²(ax + b) dx = (-1 / a) cot (ax + b) + C   (a = 0)
9.   ſcot (ax + b) dx = ſ{cos (ax + b) / sin (ax + b) dx = (1 / a) ln |sin(ax + b)| + C

Yukarıdaki eşitliklerde, sağ taraftaki fonksiyonların türevlvri alındığında, integrali alınan fonksiyon elde edilir.

2 KISMİ (PARÇALI) İNTEGRASYON YÖNTEMİ

İki fonksiyonun çarpımının integralinin hesaplanmasında genelde, kısmi integrasyon yöntemi kullanılır.bilgiyelpazesi.com
u ve v fonksiyonları, bir (a,b) aralığında türevlene bilen fonksiyonlar ise, u, v fonksiyonu da (a, b) aralığında türevlidir.

{(d / dx)(u . v)} = {(du v / dx) + (dv u / dx) olduğundan,

d(u . v) = v du + u dv   ve
u dv = d(u . v) – v du         olur.
Bu eşitliğin her iki yanının integralini alırsak;
ſ u dv = u . v - ſ v du            olur.
Bu yöntemle integral almaya, kısmi integrasyon yöntemi denir.


3 BASİT KESİRLERE AYIRMA YÖNTEMİYLE İNTEGRAL ALMA

P(x) ve  Q(x) birer polinom olmak üzere, {P(x) / Q(x)}, (Q(x) = 0) biçimindeki fonksiyonlar, rasyonel fonksiyonlardır. Basit kesirlerine ayrılabilen rasyonel fonksiyonların integralleri şu şekilde bulunur:

a, b, c, A, B Є R ve n Є N olsun.   (A / (ax + b)ⁿ) ve Δ< 0 olmak üzere,
{Ax + B / (ax² + bx + c)ⁿ biçimindeki ifadelere basit kesir denir. {P(x) / Q(x)}rasyonel ifadesi, basit kesirlerin tplamı biçiminde yazılabiliyorsa, yapılan işleme; basit kesirlere ayırma denir.
Rasyonel ifadelerin integralinin hesaplanmasında 2 yöntem vardır.

A.  P(x) in Derecesi, Q(x) in Derecesinden Küçük ise
Bu durumda, aşağıdaki yollar izlenir:
a) {P(x) / Q(x)) rasyonel ifadesinin paydası olan Q(x),
Q(x) = (a x + b )(a x + b)…(a x + b) biçiminde r tane çarpandan oluşuyorsa, bu ifade:
{P(x) / Q(x)} = {A / a x + b} + {A / a x + b}+….+{A / a x +b} şeklinde basit kesirlerin toplamı olarak yazılır. Polinomların eşitliğinden yararlanılarak; A  , A , ….., A  değerleri bulunur ve sonrada integral alınır.

B.  P(x) in Derecesi, Q(x) in Derecesinden büyük veya eşit ise
Bu durumda, P(x) polinomu Q(x) polinomuna bölünür. P(x) in Q(x) e bölünmesinden bulunan bölüm B(x) ve kalan K(x) ise,
{P(x) / Q(x)} = B(x) + {K(x) / Q(x)} biçiminde yazılır ve bu ifadenin integrali alınınr.

TRİGONOMETRİK ÖZDEŞLİKLER YARDIMIYLA İNTEGRAL ALMA
Bazı trigonometrik ifadelerin integralleri alınırken, ayşağıda verilen trigonometrik özdeşliklerden yararlanılır.


n Tek Doğal Sayı ise ſ sinⁿx dx  veya  ſ cosⁿx dx  Biçiminde Verilen İntegralleri Hesaplama

ſ sinⁿ dx = ſ sin־¹x .sinx dx        veya       ſ cosⁿ dx = ſ cos־¹x .cosx dx     biçiminde yazılır. Daha sonra,

sin²x = 1 - cos²x   veya       cos²x = sin²x   özdeşlikleri yazılarak integral alınır.

n Çift Doğal Sayı ise ſsinⁿ dx    veya   ſ cosⁿx dx Biçiminde Verilen İntegrallerin Hesaplanması

ſsinⁿx dx = ſ(sin²x)ⁿ´² dx  veya     ſcosⁿx dx = ſ(cos²x)ⁿ´² dx          yazılır.
Daha sonra, sin²x = (1 – cos2x / 2)     veya   cos²x = (1 + cos2x / 2) özdeşlikleri yazılarak integrali alınır.

İNTEGRAL FORMULLERİ

Türev

TÜREV ALMA
1. Türevin Tanımı 1
a, b birer reel sayı olmak üzere,
 fonksiyonu verilmiş olsun.
limiti bir reel sayı ise, bu limit değerine f fonksiyonunun xdaki türevi denir.
Ve f ‘(x0), Df(x0) ya da  ile gösterilir. Buna göre,
x – x0 = h alınırsa x ® x0 için h ® 0 olur. Bu durumda, tanım olarak,
eşitliği de yazılabilir.
2. Türevin Tanımı 2
fonksiyonu için,
limiti varsa bu limite f fonksiyonunun x = a daki sağdan türevi denir. Ve
biçiminde gösterilir. Benzer şekilde,
limiti varsa bu limite f fonksiyonunun x = a daki soldan türevi denir. Ve
biçiminde gösterilir.
f fonksiyonunun, x = a daki sağdan türevi soldan türevine eşit ise f nin x = a da türevi vardır (ve bulunan bu limit değerleri, o noktadaki türeve eşittir). Aksi takdirde türevi yoktur.
Sonuç
1. f ‘(a+) = f'(a) ise f fonksiyonunun x = a da türevi vardır.
2. f fonksiyonunun x = a da türevi varsa f fonksiyonu x = a da süreklidir.
3. f fonksiyonu, x = a da sürekli olduğu hâlde, o noktada türeve sahip olmayabilir.
4. f fonksiyonu x = a da sürekli değilse türevli de değildir.
Uyarı
Bir fonksiyonun, bir noktada türevinin olması için gerek koşul, o noktada sürekliliktir. Ancak bu, o noktada türevin olması için yeterli değildir.
TÜREV ALMA KURALLARI
1. xn nin Türevi
2. c Sabit Sayısının Türevi
3. c × f(x) in Türevi
4. Toplamın Türevi
5. Farkın Türevi
6. Çarpımın Türevi
7. Bölümün Türevi
Sonuç
8. Mutlak Değer Fonksiyonunun Türevi
 verilsin.  olmak üzere,
f(a) = 0 ise fonksiyonun bu noktada türevi olabilir ya da olmayabilir. Bunu araştırmak için fonksiyonun sağdan ve soldan türevlerine bakılır. Sağdan ve soldan türevler eşit ise fonksiyon bu noktada türevlidir. Aksi hâlde türevli değildir.
Sonuç
Mutlak değer fonksiyonu tek katlı köklerde köşe (uç) oluşturur. Köşe (uç) noktalarda türev yoktur.
Çift katlı köklerde köşe (uç) oluşmaz. Bunun için, çift katlı köklerde türev vardır ve sıfırdır.
9. İşaret Fonksiyonunun Türevi
10. Tam Değer Fonksiyonunun Türevi
11. Bileşke Fonksiyonun Türevi
Uyarı
f ‘(2) gösterimi [f(2)]’ gösterimi ile karıştırılmamalıdır.
f ‘(2) ¹ [f(2)]’ dir.
Çünkü f ‘(2) gösterimi, fonksiyonun türevinin, yani f ‘(x)  in x = 2 için değeridir.
[f(2)]’ gösterimi, fonksiyonun x = 2 için değerinin (Yani, bir reel sayının) türevidir. [f(2)]’ = 0 dır.
Kural
12. Köklü Fonksiyonun Türevi
Kural
13. Logaritmik Fonksiyonun Türevi
Kural
14. Üstel Fonksiyonun Türevi
Kural
15. Parametrik Olarak Verilen Fonksiyonların Türevi
 fonksiyonu  şeklinde belirtilebileceği gibi, g ve h iki fonksiyon olmak üzere
y = g(t)
x = h(t)
denklemleri ile de belirtilebilir. Burada t ye parametre denir.
Bazen y = g(t) ve x = h(t) denklemlerinden t yok edilerek y = f(x) şeklinde bir denklem elde edilebilir. Ancak bu her zaman mümkün olmayabilir.
Bu durumda,
y = g(t), x = h(t) parametrik denklemleriyle verilen
y = f(x) fonksiyonunun türevi aşağıda verilen kural yardımıyla bulunur.
16. Kapalı Fonksiyonların Türevi
F(x, y) = 0 şeklindeki fonksiyonlara kapalı fonksiyon denir.
x in değişken, x in dışında kalanların sabit gibi düşünülmesiyle alınan türevi Fx ile ve y nin değişken, y nin dışında kalanların sabit gibi düşünülmesiyle alınan türevi Fy ile gösterelim.
Buna göre, kapalı fonksiyonun türevini şu kural yardımıyla buluruz:
17. Trigonometrik Fonksiyonların Türevi
18. Ardışık Türevler
y = f(x) in türevi  olmak üzere,
f'(x) in türevi olan  ifadesine
y = f(x) in ikinci mertebeden türevi denir.
Benzer şekilde,  ifadesine de y = f(x) in n.
mertebeden türevi denir.
Kural
19. Ters Fonksiyonların Türevi
f: A ® B, birebir ve örten bir fonksiyon ise f(x) in tersi olan f–1(x) fonksiyonu bulunur. Sonra türev alınır. Bunun zor olduğu durumlarda ters fonksiyonun türevi şöyle alınır.
Kural
Ters trigonometrik fonksiyonların türevinin bulunmasında şu formüller kullanılabilir.